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MWe—wtudy granular jumps generated in the gravity flow of granular
materials down an inclined plane. The equations governing the granular flow
are reduced to a sequence of boundary value problems of linear ordinary
differential equations by means of an asymptotic method. Their solutions are
used to determine the Burgers equation, which possesses a progressive wave

solution to describe a smooth granular jump. The wave speed and a criterion

for the stability of the granular jump are also obtained./~<<\\\\\\\\’
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SIGNIFICANCE AND EXPLANATION

Problems of flow of granular materials have attracted much attention
recently because of their importance in industrial applications and
geophysical situations. It is observed in laboratory tests that a granular
jump may appear in the gravity flow of a granular material down an inclined
plane. The granular jump may be considered as a wave front moving with
constant velocity on the free surface of the granular material and connecting
one uniform depth to another. The main contribution of this report is to
develop an asymptotic method, which can describe the speed, wave profile and

stability of the granular jump.
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GRANULAR JUMPS DOWN AN INCLINED PLANE

L ]
M. C. Shen

1. Introduction

In recent years there has been much interest in the study of the gravity
flow of granular materials. Needless to say, granular flow problems occur
frequently in industry as well as in nature such as handling of grains and
sands, snow avalanches and rock falls. It is reported in laboratory tests
(Savage, 1979) that smooth granular jumps may be observed when granular
materials are moving down an inclined chute. As seen from loose snow
avalanche or earth slide in nature, such a granular jump also seems to
appear. On the other hand, since Goodman and Cowin (1972) proposed their
continuum theory for flow of granular materials, only a few analytical results
based upon their equations have been found, for example, steady state
solutions by Goodman and Cowin (1971), and solutions of the linearized
equations by Nunziato and Walsh (1977). The main purpose of this report,
therefore, is to develop an asymptotic method for the study of the time-
dependent granular flow under gravity down an inclined plane, which provides a
means to describe the development of a smooth granular jump. Some results
concerning granular jumps have been obtained by Morrison and Richmond (1976),
and Savage (1979). However, their approach is based upon algebraic

considerations of conservation laws for hydraulic jumps.
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In this report we adopt the equations formulated by Goodman and Cowin
{1972) for the so-called cohesionless Coulomb granular material, and our

approach used here is essentially an extension of the method we developed in a

previous report (Shen, 1983) for the compressible viscous flow down an
inclined channel. We briefly explain the method as follows. Assume that the
granular flow down an inclined plane is two dimensional. We choose a

coordinate system moving with the wave front of a granular jump so that the

horizontal axis is parallel to the plane. A small parameter € as the ratio

of the vertical length scale H to the horizontal length scale L is
introduced. We assume that the vertical velocity component is much smaller
than the horizontal velocity component, and consider the granular flow for
large time. Then we use € to stretch various variables non-dimenionalized
by appropriate units so that these assumptions are met. The solution of the
governing equations is expanded in an asymptotic series in integral powers of

€, and the equations for the successive approximations determine the wave

speed and an evolution equation for the free surface, which is the well-known
Burgers equation. The signs of some coefficients in the Burgers equation
determine whether the equation is ill-posed and provide a criterion for the

stability of the flow.

The governing equations used here involve four material constants; two of |
them are related to the equilibrium stress and the other two appear in the
dynamjic stress. We first develop a general method in which all the material
constants are assumed to be finite. However, the calculations of the wave
speed and the coefficients in the Burgers equations are rather prohibitive.
To simplify the derivatlions, we shall consider a special case, that is, we

choose one of the material constants to be large in comparison with the .

others. In this case the equilibrium solution reduces to the one for the




incompressible viscous flow down an inclined plane, and the wave speed and the
coefficients in the Burgers equation can be explicitly expressed in terms of
the remaining constants. We also note that many other constitutive equations
have been proposed for granular materials lately (Cowin and Satake, 1978;
Savage, 1979; Nunziato, Passman and Thomas, 1980; Savage and Jeffrey, 1981;
Sayed and Savage, 1983). Most of them are generalizations of the original
formulation due to Goodman and Cowin (1972). The basic ideas developed here
could also apply to these more general cases.

We formulate the problem for the general case in Section 2. The wave
speed and the Burgers equation are derived in Section 3. In Section 4, we
consider the special case. In Section 5, we define the criterion of

stability, derive an expression for the wave profile of a granular jump and

present some problems for further study.
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2. Pormulation
We consider a cohesionless Coulomb granular material flowing down a rough
inclined plane so that we may impose the no-slip condition there. The flow is
assumed to be two dimensional and a -oordinate system moving at a speed o*
in the x*-direction is chosen so that the x*-axis is parallel to the plane and
the y*~-axis is positive upward (Figure 1). The governing equations are the
following:
Ve, + 70« (vigr) = 0, (1
Y\J’(;;. + ;a . V';*) = V% o Tt & Yvo;a ) (2)
subject to the boundary conditions:

At the free surface £* = y* - n¥*(x* ¢t*) =0 ,

;t . ;ﬁ = ¢ (3)
h* e n* =0 , (4)
Nte tutnz, - vt =0 (S)
at the rough rigid plane,
;ﬁ = g% R Ve = v; - (6)

Here V* = (3/3x*,3/3y*) = (3/3x:,3/3x5), v* jis the volume distribution

function, Y is the mass density assumed to be constant, q* = (u*,v*) =

(u:,ug) is the velocity of the flow, T* ig the stress tensor defined by

re. = [-Br(v)? + a* (Vw2 4 2a0ve(19)2u018 - 2a%ve ve, +
i ij x* x*

3 1 X
ASTH o ;.G.i.j + 2"'°Ij .
°13 = ‘“Zx- * “sz)/z ’
; = (g sin 6, -g cos 9) is the constant qravitational acceleration, 8 is
the angle of inclination of the plane to the horizontal assumed to be greater

than the angle of internal friction but less than 71/2, ;' is the equi-

librated stress vector given by h* = 20%Vey*,  and ;' is the vector




Figure 1. Coordinate system for the granular flow




(n;,.-1) normal to the free surface. For simplicity, we assume that a*,

8*, u* and v; are positive constants, and A* 1is also constant but

satisfies 3\* + 2u* > 0,
We introduce the following nondimensional variables:

v = vae (u) = (u*,eve) (gm) V2,

1

1/2. (x,y) = (€-1x'.y')ﬂ- .

t = e-zt‘(ﬂ/g)-
-1 -1
o =0%gH) , B = 8'(Yv;qﬂ) P

a = a*(yAga) ™', () = (x'.u~)(yv;(gn)’/2n)°‘

€ = H/L .

In terms of them, (1) to (6) become

Ev. + (vu) + (vw) =0 , (7)
t x y

2
EV(Czu +uu + vu ) = =2B8evv + 2ave(e v +v )
t x b4 X XX Yy X
(8)

+ A +uedu +v) +ueu +u ) +vsind
x y x XX yy

2 2
€ Wev, +uv + vv ) = =28vy  + 2av(e Vv +v )
t X b4 y XX yrY
(9)

+ (A +u)e(u_+v) + ue(ezv +v )=vcos b ;
x Yy Xxx YY
at y = nix,t),

2 2 2
[-8v2 + a(ezv2 + vz) + 2av(e v +v ) - 2ae (v )
xX Y XX YY x
(10)

+le{(u +v ) + 2ueu len + 2aev v - pl{u + ezv )y=0 |,
x Yy x x Xy Y x

2 2 2 2
[=2a€ev V + puy(u + ezv YlJen + Bv -ale v + v )
Xy Y x x X Yy

(1)

-Zav(ezv + v )+ 2a(v )2 -Ae(u +v ) - 2puev =0 ,
xx Yy Y x y y

2
ENRV ~v =0 , {12)
x x V4
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3. Wave speed and the Burgers equation
Assume that u, v, v and n possess an asymptotic expansion of the form
2
= + +oo0se .
¢ =9, ted, ted, (15)
without loss of generality, we may assume 0 = oo + 801. Subgtitution of (15)
in (7) to (14) yields a sequence of equations and boundary conditions for the

successive approximations. The equations for the zeroth approximation are

u uoYy = -V, sin e , (16)
2av - 2Bv = cos 8 ; (17)
Oyyy Oy
at y =0,
uoy =0 ’ (18)
2a vOyy - Bvo =0 , (19)
v =0 3 (20)
oy
at y = -1,
Vg = s Vo T 1 (21)
where u, is assumed to be a function of y only and Vo =Ny T 0. The

solutions of (16) to (21) for u, and Vo can be easily found, and a

discussion of these solutions is given in Goodman and Cowin (1971). Following

them, we define

L = (B/<!)1/2 and M = cos 8/(28) , (22)
and obtain
Vo = Mz—1 sinh 2y
(23)
+ (1 -m+ M sinh £)(1 + cosh £)" (1 + cosh Ly) - My
Uy = % " 9%
-1 -3 =1
=y  gin 8{-Mt “(sinh £ + sinh Ly) + (1-M+M2  sinh 2)x
(24)

(1 + cosh ) 101-y21/2 + £ 7% (cosh £ - cosh Ly)] + (M/6)(14+y>)

s+ M 21y} - 0

oc




For small £, we may expand Yo and ¢° in integral powers of £ and

obtain

Vo= 1+ 21we)yS + yP/a ¢ /6 - /8] weeeee (25)

- 4
4y = u ' sin 0{01y"12 + P 10yP 12 - 1/8) + (1-y"y/a8
(26)

- M(1+y5)/120]*°""} .
We see from (25) and (26) that as 2 + 0, vo, uo tend to the solutions for an
incompressible viscous flow fown an inclined plane (Landau and Lifshitz,
| 1959). This result motivates our choice of a as a large parameter in the
next section so that expressions for the wave speed and the coefficients in
the Burgers equation can be greatly simplified. On the other hand, if
L +o>, v tends to a discontinuous solution when M # 1 and becomes zero

(4]

at y = 0 (Goodman and Cowin, 1971). Therefore, we shall not study this case

in the sequel.

The eguations for the first approximation are

(v1uo + vou1)x + (v0v1)y =0 |, (27)
i u1yy = -\)1 sin 6 , (28)
a v -B8v =0 ; (29)
tyyy 1y
at y =0,
+ =
u1y “0yy“1 o , (30)
+ - = -
a(vov1yy VOyyvr) 8 vov1 a vovoyyyn1 R (31)
+ = H
v1y voyyn1 (32)
uon1x “v, = 0 (33)
] at y = -1,
u, = -0 v, =0, v, =0 (34)

1 1 " 1

As observed from (28) to (32) and (34), we may express Vv  and u, as

v, = ¢1n1, u, = Q'n' -9, . (35)




at y =0,

(-Bv2+2av v In. - u(u. + tu. n, o+ 2,2) =0

0%V Yoyy M1x T ¥ U2y 1y oyy"2 ' Yoyyy "

4

2 2 2 2

8(2v°voyyn1/2 + v1 + 2v0\a1yn1 + 2v0v2) + 2[(voyy) n, + (v,y
2
1 = 2a(v (v /2 +

+ v + +
2“°yy 1y 1 0 Voyyy"2 T Voyyyy" Yigyy™ V2

2
+ + + + +
vOyy(vOVy"1/2 v,yn1 v, v1v1yy) v1(voyyyn‘ + v1y

X(u1x + v1y) -2u v1y =0 ,

+ -

V2y v!yni * vOyy“1/2 o .
Mre ¥ Yo2x * UM Y Yoy iMax T V2 T VM 2 0 d
at y = -1,
u2 = v2 = vz =0 .

From (17), (19), (24), (35), (36) and (42), we may rewrite (

and (53) as follows:

L1(u2) =y u2yy = -v, sin 0 + [VO(QO-OO)Q1 + 28\)001 - 2av

+
Vofi®oyIMix -

L.(v.) = 2av_v - afv v = ~[(A+p)( +f ) + uf ]
22 0 2yyy 0 2y ¢1y tyy yy
at y =0,
R_(u.) = pu = (-8v2+2av v n - uld, +¢ /2) 2 _ ¢
172 " 2y 0 0 Oyy 1x v 1y "Oyyy ™ v Oyy

Bz(vz) = 2av_.V - Bvov

0 2yy = e, ) - e Ing

2

2 2 2
+ {B‘VOVoyy**1*zvo*1y’ - 20[(voyy) /2 - (w1y) /2 + von
R L N v, el
yyy Oyy 1y’ lyy 1" Oyyy tyy 1
- Zavovoyyyn2




2
= -(w‘y + voyy/Z)n1 ! (58)
at y = -1,
=v, =0 , (59)
It is observed from (54) to (59) that u, and v, can be expressed in the

following forms

- 2 A
u, oznh( + 03n1 + 04n2 ' (60) _
2
v, = "2"1;: ML ZUPER L L PR (61)
Here tz to 04 and 02 to ¢4 are functions of y and satisfy
Lz("i) = Fi , i1=2,3,4 , (62)
52(01) = Gi ' 83(01) = Hi , at y =0 |, (63)
wl =0 at y=-1 ; (64)
L) =1, . 3=23,4 (65) j
= J t =0 66
B (o) =3, at y . (66) V
. =0 at y=-1 , (67) n
J |
where %
F, = -(X+u)(¢1y + f‘w) - uf1yy . ‘
F.i. =0 , i1i=13,4 , ig
= - “
G2 X(O,*f,y) 2uf1y ¢ :
2 2 2 ;
G3 = B(VOvoyy+¢1+2vow1y) - Za[(voyy) /2 - (v1y) /2 + vo(voyyyy/z
+ ) + v + (v + ‘
‘p'yyy Ow"J WW yy Yy Oyyy v 1yy) ' ‘
!
G, '2°'“o"0yyy , ‘
H3 = -(¢1y+voyy/2). Hi =0, i=3,4 ,
I, = -Wz sin 0 + uo(¢0-00)¢1 + 28v°v1 - 2Gv0v1yy +
2
Jy = =By, + 2avov°yy, J, =0, J, --u(¢1y + OOyyy/z) ’

(4%

-12-




w—a--u-—n-—u-lﬂ-lHlIlllllllIlllll!lIll!l!!lllllIll;-.-....!.-..-...._-.-'______‘

Iy = -uOOYY

In principle, we can solve (62) to (67) for Wi and ‘j' and in turn u,

and Vv, can be determined from (60), (61). Now we are in a position to

2
determine the Burgers equation. We inteqrate (46) with respect to y from

y=-~1 to y =0 and make use of (18), (33) to (35), (52) to (53), (60) and

(€1), to obtain

0 0 2
[y 4y 0y LIV ROV SO0 P S G P YNyl (6g=0y) + ¥ (éyn =0, 0n,

2
* V0N 6Ny 6N, )] dy + ¥, (004 (0)-0,In, N, (68)

e (9970 Ng,  (BynyTony b oy 00Ny =0 .

Note that the coefficient of n, vanishes because of (45). By rearranging

mon1t + m.n + m.n_n = m3n1xx ’ (69)

\
the terms, we finally ohtain the Burgers equation ;
1 1% 21 1x i

Which is our main result. Here J

0 =
f_1 V1dy +1 , m, = =~0,m, ‘

m0=
- o - - - ‘
my =2 [2 103(80=00) + ¥ 8, + v o 1dy + b 10)[6,(0)=0 ] + ¢ (0) £,,(00 |
] ,
my = = L 0y 100700) + voslay . E

(69) can be used to study the development of a granular jump.

-13-




4. A special case

In Section 3, we derived the expressions for the wave speed ao and the

coefficients for the Burgers equation. However, they depend upon 0, a, B, A

and u, and are too complicated for applications. Therefore, as motivated by

the discussion of vo

and 00 given in the last Section, we asgsume a = 1/¢

to be a large parameter. Substitution of (15) in (8) to (14) also yields a

sequence of equations and bounding conditions. The equations for the zeroth

approximation are the following:

u uoyy = -vo sin 8 ,
v =0 3
Oyyy
at y =0,
“0y =0 , (72)
v = 0 v =0
Oyy oy
at y = -1,
Ug = Ogr Vo =1 -

It is easily seen that

u, = [sin 8/(2p)) (1 yz) -0

0

(75) and (76) are solutions for the incompressible viscous flow down an
inclined plane.
The equations for the first approximation are

+ + =
(\’1uo vou1)x (vov1)y o ,

- -V in 6
u u1yy = 2v1yyx 1 sin H
2v = cos 0
yyy !
at y=0,
Yy * Yoyy™1 T o .
v1yy =0 ,
-14-
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(70)

(71)

(73)

(74)

(75)

(76)

(77)
(78)

(79)

(80)

(81)




v =0 , (82)
u.n -v, =0 ;3 (83)

at y = -1,

v, =v, =0 (84)

Y159 7Y

1 1
It is found from (78) to (82), and (34) that

v, = (cos 6/12)(1 + y3) (85)

S
u, = [sin 0 cos 6/(2¢u)) (9/10 - yz -y /10) -~ o, *+ (sin B/u)(Hy)n1 . (86)

1

We now integrate (77) with respect to y from y = -1 to y and obtain, by

{75), (76), (85) and (86),

v, = _!y u, dy = ~[sin 9/(2u)](1+y)2n . (87)
1 -1 "1x 1x

It follows from (76), (83) and (87), that

[sin 6/(2y) - oo]n1x = ~gin 0/(2u)n1x .

Assume that n1x # 0 and we have

9y = sin 8/u . (88)

Now we proceed to the equations for the second approximation

+v + + + =
Vag * (Va0 F VU T VUl t Vg Veva), 2 0 (89)
+ = 2v + + i
uou1x v1uoy 2 2yyx uu2yy v2 sin 8 , (90)
- 28v + 2(v + v,V ) ~VvV_cos 8 =0 ; (91)
1y 2yyy 1 tyyy 1
at y =0,
2
-8+ - + + + =
(-8 2v1yy)n1x u(u2y u1yn1 uoyyn2 uoyyyn1/2) o , (92)
2
= - + =
28v1 )v,y) 2(v2yy-v1v1yy vayyn1) o , (93)
. + =
vzy v‘yyn‘ o , (94)
n + u,.n + un + u_n.n -v,=-v,n, =0 ; (95)

0 2x 1 1x Oy 1 1x 2 iyt

From (85), (91), (93), (94) and (96), we find that

2 5
v, = (B cos 8/24)(=9/10 + y" + y /10) + (cos 8/4)(1-y’In_ .




Then from (76), (86), (87), (90), (92), (96) and (97) it is obtained that

wu, = [-B - cos 8/2 - sin29/(8u2) - By + yzcos 8/2 + sinzﬁ(-ya/G + y4/12)]n1x

+ cos 8 sin B(S-6y°+y")n /48 - sin 8(1+y)n] + sin 8(1+y)n, (98)

- B cos 8 sin 8(155-189y°> + 35y% + y’)/10080 .

Making use of (74), (76), (83) to (88) and (95) to (98), we integrate (89)

with respect to y from y = -1 to y =0 to obtain

+ + =
e 7 ™M T ™M T P3Nk ! (99)

where the coefficient of n2 vanishes because of (88), and

m, = cos ® sin 6/(24p) - o,

m, = sin 84,

m, = B/2 + cos 8/3 + 23 sin26/(240p2) .

-16=




f S. Discussion
It is well known that the Burgers equation as given by (69) or (99) is
ill-posed if the coefficients m, and m,; are of opposite signs. Therefore,
s we may use this result to define the criterion of stability. Since in (69),
m, and m,; depend upon 9, a, B, A and u, we say a granular jump is

/ = £(8,a,8,\,u) > 0.

"o
For (99), m, = 1 and my > 0. Hence a granular jump is always stable in

stable if m, and m, are of same sign i.e. m3
this sense.

The solution method for the Burgers equation is also well known and we
only give a brief discussion of the steady state solutions of (69) and (99) in

reference to a moving frame. Assume all the coefficients in (69) are not

n + 0 as x +* =, It is easily found that

zero, ms/n0 >0 and n10 1%

n, = -(m1/m2)[1 + tanh(m’(x+c)/(2m3))] .

1

where c is an arbitrary constant and we require m1/m3 < 0, Since in (69),

1 001, ma/mo >0 and m1/n3 < 0 imply o, > 0. Since

1

g =0, + €0, >0

0 1 o’ We say the granular jump moves at a supercritical speed.

If mo/m2 >0, then n_, + 2m. 0 /m2 >0 as x + -, In this case n

1 01 1

decreases smoothly from 2m°/o1/m2 to zero as x increases. On the other
hand, if mo/m2 < 0, then n1 increases smoothly from w°a1/m2 < 0 to zero
as x increases. For the special case congsidered in Section 4, m, = 1,

>0, my > 0. Hence m1/m3 <0 implies o_ > cos O sin 6/(24y) > 0 and

the speed of the granular jump is supercritical. Furthermore, m, > 0
implies that we always have a decreasing granular jump.

Finally we consider some problems for further study. If the free surface
of the granular material is replaced by a rigid plane, then one boundary
condition is lost and we do not have enough boundary conditions to determine
the flow. In fact, in the gravity flow of a granular material between two

vertical plates (Goodman and Cowin, 1971), a slug flow avpears in the central

=17=




part of the vertical channel. It should be of interest to extend the approach
to the study of the granular flow between two parallel inclined planes.
Furthermore, if -o/-3 < 0, an investigation of the ill-posed problem is
certainly of importance. Finally the asymptotic method used here is based
upon the existence of a solution given by (15). A justification of the

method, needless to say, will he a significant contribhution to granular flow

problems.
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